Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2161, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38461302

RESUMO

Human and animal tuberculosis is caused by the Mycobacterium tuberculosis Complex (MTBC), which has evolved a genomic decay of cobalamin (vitamin B12) biosynthetic genes. Accordingly, and in sharp contrast to environmental, opportunistic and ancestor mycobacteria; we demonstrate that M. tuberculosis (Mtb), M. africanum, and animal-adapted lineages, lack endogenous production of cobalamin, yet they retain the capacity for exogenous uptake. A B12 anemic model in immunocompromised and immunocompetent mice, demonstrates improved survival, and lower bacteria in organs, in B12 anemic animals infected with Mtb relative to non-anemic controls. Conversely, no differences were observed between mice groups infected with M. canettii, an ancestor mycobacterium which retains cobalamin biosynthesis. Interrogation of the B12 transcriptome in three MTBC strains defined L-methionine synthesis by metE and metH genes as a key phenotype. Expression of metE is repressed by a cobalamin riboswitch, while MetH requires the cobalamin cofactor. Thus, deletion of metE predominantly attenuates Mtb in anemic mice; although inactivation of metH exclusively causes attenuation in non-anemic controls. Here, we show how sub-physiological levels of B12 in the host antagonizes Mtb virulence, and describe a yet unknown mechanism of host-pathogen cross-talk with implications for B12 anemic populations.


Assuntos
Mycobacterium tuberculosis , Riboswitch , Tuberculose , Animais , Humanos , Camundongos , Vitamina B 12/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Virulência/genética
2.
Nat Commun ; 14(1): 6090, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794033

RESUMO

Intravesical administration of Bacillus Calmette-Guérin (BCG) was one of the first FDA-approved immunotherapies and remains a standard treatment for bladder cancer. Previous studies have demonstrated that intravenous (IV) administration of BCG is well-tolerated and effective in preventing tuberculosis infection in animals. Here, we examine IV BCG in several preclinical lung tumor models. Our findings demonstrate that BCG inoculation reduced tumor growth and prolonged mouse survival in models of lung melanoma metastasis and orthotopic lung adenocarcinoma. Moreover, IV BCG treatment was well-tolerated with no apparent signs of acute toxicity. Mechanistically, IV BCG induced tumor-specific CD8+ T cell responses, which were dependent on type 1 conventional dendritic cells, as well as NK cell-mediated immunity. Lastly, we also show that IV BCG has an additive effect on anti-PD-L1 checkpoint inhibitor treatment in mouse lung tumors that are otherwise resistant to anti-PD-L1 as monotherapy. Overall, our study demonstrates the potential of systemic IV BCG administration in the treatment of lung tumors, highlighting its ability to enhance immune responses and augment immune checkpoint blockade efficacy.


Assuntos
Neoplasias Pulmonares , Neoplasias da Bexiga Urinária , Camundongos , Animais , Vacina BCG , Neoplasias da Bexiga Urinária/patologia , Linfócitos T CD8-Positivos , Administração Intravenosa , Imunidade Celular , Células Matadoras Naturais , Pulmão/patologia , Neoplasias Pulmonares/tratamento farmacológico
3.
J Immunother Cancer ; 10(7)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35781395

RESUMO

BACKGROUND: Intravesical BCG is the gold-standard therapy for non-muscle invasive bladder cancer (NMIBC); however, it still fails in a significant proportion of patients, so improved treatment options are urgently needed. METHODS: Here, we compared BCG antitumoral efficacy with another live attenuated mycobacteria, MTBVAC, in an orthotopic mouse model of bladder cancer (BC). We aimed to identify both bacterial and host immunological factors to understand the antitumoral mechanisms behind effective bacterial immunotherapy for BC. RESULTS: We found that the expression of the BCG-absent proteins ESAT6/CFP10 by MTBVAC was determinant in mediating bladder colonization by the bacteria, which correlated with augmented antitumoral efficacy. We further analyzed the mechanism of action of bacterial immunotherapy and found that it critically relied on the adaptive cytotoxic response. MTBVAC enhanced both tumor antigen-specific CD4+ and CD8+ T-cell responses, in a process dependent on stimulation of type 1 conventional dendritic cells. Importantly, improved intravesical bacterial immunotherapy using MBTVAC induced eradication of fully established bladder tumors, both as a monotherapy and specially in combination with the immune checkpoint inhibitor antiprogrammed cell death ligand 1 (anti PD-L1). CONCLUSION: These results contribute to the understanding of the mechanisms behind successful bacterial immunotherapy against BC and characterize a novel therapeutic approach for BCG-unresponsive NMIBC cases.


Assuntos
Neoplasias da Bexiga Urinária , Animais , Vacina BCG/uso terapêutico , Bactérias , Inibidores de Checkpoint Imunológico , Imunoterapia , Camundongos , Neoplasias da Bexiga Urinária/terapia
4.
Mol Ther Nucleic Acids ; 27: 1235-1248, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35282413

RESUMO

Cyclic (di)nucleotides act as universal second messengers endogenously produced by several pathogens. Specifically, the roles of c-di-AMP in Mycobacterium tuberculosis immunity and virulence have been largely explored, although its contribution to the safety and efficacy of live tuberculosis vaccines is less understood. In this study, we demonstrate that the synthesis of c-di-AMP is negatively regulated by the M. tuberculosis PhoPR virulence system. Accordingly, the live attenuated tuberculosis vaccine candidate M. tuberculosis vaccine (MTBVAC), based on double phoP and fadD26 deletions, produces more than 25- and 45-fold c-di-AMP levels relative to wild-type M. tuberculosis or the current vaccine bacille Calmette-Guérin (BCG), respectively. Secretion of this second messenger was exclusively detected in MTBVAC but not in M. tuberculosis or in BCG. We also demonstrate that c-di-AMP synthesis during in vitro cultivation of M. tuberculosis is a growth-phase- and medium-dependent phenotype. To uncover the role of this metabolite in the vaccine properties of MTBVAC, we constructed and validated knockout and overproducing/oversecreting derivatives by inactivating the disA or cnpB gene, respectively. All MTBVAC derivatives elicited superior interleukin-1ß (IL-1ß) responses compared with BCG during an in vitro infection of human macrophages. However, both vaccines failed to elicit interferon ß (IFNß) activation in this cellular model. We found that increasing c-di-AMP levels remarkably correlated with a safer profile of tuberculosis vaccines in the immunodeficient mouse model. Finally, we demonstrate that overproduction of c-di-AMP due to cnpB inactivation resulted in lower protection of MTBVAC, while the absence of c-di-AMP in the MTBVAC disA derivative maintains the protective efficacy of this vaccine in mice.

5.
Sci Immunol ; 6(63): eabc2934, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34559551

RESUMO

Bacillus Calmette-Guerin (BCG) is an attenuated bacterial vaccine used to protect against Mycobacterium tuberculosis (Mtb) in regions where infections are highly prevalent. BCG is currently delivered by the intradermal route, but alternative routes of administration are of great interest, including intrapulmonary delivery to more closely mimic respiratory Mtb infection. In this study, mice subjected to pulmonary delivery of green fluorescent protein­tagged strains of virulent (Mtb) and attenuated (BCG) mycobacteria were studied to better characterize infected lung cell subsets. Profound differences in dissemination patterns were detected between Mtb and BCG, with a strong tendency of Mtb to disseminate from alveolar macrophages (AMs) to other myeloid subsets, mainly neutrophils and recruited macrophages. BCG mostly remained in AMs, which promoted their activation. These preactivated macrophages were highly efficient in containing Mtb bacilli upon challenge and disrupting early bacterial dissemination, which suggests a potential mechanism of protection associated with pulmonary BCG vaccination. Respiratory BCG also protected mice against a lethal Streptococcus pneumoniae challenge, suggesting that BCG-induced innate activation could confer heterologous protection against respiratory pathogens different from Mtb. BCG drove long-term activation of AMs, even after vaccine clearance, and these AMs reacted efficiently upon subsequent challenge. These results suggest the generation of a trained innate memory-like response in AMs induced by pulmonary BCG vaccination.


Assuntos
Vacina BCG/imunologia , Tuberculose Pulmonar/imunologia , Animais , Modelos Animais de Doenças , Pulmão/imunologia , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mycobacterium tuberculosis/imunologia
6.
Comput Struct Biotechnol J ; 19: 4273-4283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34429847

RESUMO

Live vaccines are attractive vehicles for antigen delivery as a strategy to immunize against heterologous pathogens. The live vaccine MTBVAC is based on rational attenuation of Mycobacterium tuberculosis with the objective of improving BCG protection against pulmonary tuberculosis. However, the development of recombinant mycobacteria as antigen-presenting microorganisms has been hindered due to their fastidious genetic manipulation. In this study, we used MTBVAC as a genetic platform to deliver diphtheria, tetanus, or pertussis toxoids, which are the immunogenic constituents of the DTP vaccine. When using nonoptimal genetic conditions, the expression of these immunogens was barely detectable. Accordingly, we pursued a rational, step-by-step optimization of the genetic components to achieve the expression and secretion of these toxoids. We explored variants of the L5 mycobacteriophage promoter to ensure balanced antigen expression and plasmid stability. Optimal signal sequences were identified by comparative proteomics of MTBVAC and its parental strain. It was determined that proteins secreted by the Twin Arginine Translocation pathway displayed higher secretion in MTBVAC, and the Ag85A secretion sequence was selected as the best candidate. Because the coding regions of diphtheria, tetanus, and pertussis toxoids significantly differ in G + C content relative to mycobacterial genes, their codon usage was optimized. We also placed a 3xFLAG epitope in frame with the C-terminus of these toxoids to facilitate protein detection. Altogether, these optimizations resulted in the secretion of DTP antigens by MTBVAC, as demonstrated by western blot and MRM-MS. Finally, we examined specific antibody responses in mice vaccinated with recombinant MTBVAC expressing DTP antigens.

7.
EBioMedicine ; 64: 103186, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33478923

RESUMO

BACKGROUND: Substantial recent advances in the comprehension of the molecular and cellular mechanisms behind asthma have evidenced the importance of the lung immune environment for disease outcome, making modulation of local immune responses an attractive therapeutic target against this pathology. Live attenuated mycobacteria, such as the tuberculosis vaccine BCG, have been classically linked with a type 1 response, and proposed as possible modulators of the type 2 response usually associated with asthma. METHODS: In this study we used different acute and chronic murine models of asthma to investigate the therapeutic efficacy of intranasal delivery of the live tuberculosis vaccines BCG and MTBVAC by regulating the lung immune environment associated with airway hyperresponsiveness (AHR). FINDINGS: Intranasal administration of BCG, or the novel tuberculosis vaccine candidate MTBVAC, abrogated AHR-associated hallmarks, including eosinophilia and lung remodeling. This correlated with the re-polarization of allergen-induced M2 macrophages towards an M1 phenotype, as well as with the induction of a strong allergen-specific Th1 response. Importantly, vaccine treatment was effective in a scenario of established chronic asthma where a strong eosinophil infiltration was already present prior to immunization. We finally compared the nebulization efficiency of clinical formulations of MTBVAC and BCG using a standard commercial nebulizer for potential aerosol application. INTERPRETATION: Our results demonstrate that pulmonary live tuberculosis vaccines efficiently revert established asthma in mice. These data support the further exploration of this approach as potential therapy against asthma. FUNDING: Spanish Ministry of Science [grant numbers: BIO2014-5258P, RTI2018-097625-B-I00], Instituto de Salud Carlos III, Gobierno de Aragón/Fondo Social Europeo, University of Zaragoza [grant number: JIUZ-2018-BIO-01].


Assuntos
Asma/imunologia , Asma/terapia , Vacinas contra a Tuberculose/uso terapêutico , Vacinas Atenuadas/uso terapêutico , Administração Intranasal , Remodelação das Vias Aéreas/imunologia , Alérgenos/imunologia , Animais , Vacina BCG , Biomarcadores , Microambiente Celular/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Eosinófilos/imunologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Feminino , Imunização , Camundongos , Ovalbumina/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas Atenuadas/administração & dosagem
8.
Comput Struct Biotechnol J, v. 19, p. 4273-4283, jul. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3927

RESUMO

Live vaccines are attractive vehicles for antigen delivery as a strategy to immunize against heterologous pathogens. The live vaccine MTBVAC is based on rational attenuation of Mycobacterium tuberculosis with the objective of improving BCG protection against pulmonary tuberculosis. However, the development of recombinant mycobacteria as antigen-presenting microorganisms has been hindered due to their fastidious genetic manipulation. In this study, we used MTBVAC as a genetic platform to deliver diphtheria, tetanus, or pertussis toxoids, which are the immunogenic constituents of the DTP vaccine. When using nonoptimal genetic conditions, the expression of these immunogens was barely detectable. Accordingly, we pursued a rational, step-by-step optimization of the genetic components to achieve the expression and secretion of these toxoids. We explored variants of the L5 mycobacteriophage promoter to ensure balanced antigen expression and plasmid stability. Optimal signal sequences were identified by comparative proteomics of MTBVAC and its parental strain. It was determined that proteins secreted by the Twin Arginine Translocation pathway displayed higher secretion in MTBVAC, and the Ag85A secretion sequence was selected as the best candidate. Because the coding regions of diphtheria, tetanus, and pertussis toxoids significantly differ in G + C content relative to mycobacterial genes, their codon usage was optimized. We also placed a 3xFLAG epitope in frame with the C-terminus of these toxoids to facilitate protein detection. Altogether, these optimizations resulted in the secretion of DTP antigens by MTBVAC, as demonstrated by western blot and MRM-MS. Finally, we examined specific antibody responses in mice vaccinated with recombinant MTBVAC expressing DTP antigens.

9.
PLoS Pathog ; 16(12): e1009061, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33347499

RESUMO

Species belonging to the Mycobacterium tuberculosis Complex (MTBC) show more than 99% genetic identity but exhibit distinct host preference and virulence. The molecular genetic changes that underly host specificity and infection phenotype within MTBC members have not been fully elucidated. Here, we analysed RD900 genomic region across MTBC members using whole genome sequences from 60 different MTBC strains so as to determine its role in the context of MTBC evolutionary history. The RD900 region comprises two homologous genes, pknH1 and pknH2, encoding a serine/threonine protein kinase PknH flanking the tbd2 gene. Our analysis revealed that RD900 has been independently lost in different MTBC lineages and different strains, resulting in the generation of a single pknH gene. Importantly, all the analysed M. bovis and M. caprae strains carry a conserved deletion within a proline rich-region of pknH, independent of the presence or absence of RD900. We hypothesized that deletion of pknH proline rich-region in M. bovis may affect PknH function, having a potential role in its virulence and evolutionary adaptation. To explore this hypothesis, we constructed two M. bovis 'knock-in' strains containing the M. tuberculosis pknH gene. Evaluation of their virulence phenotype in mice revealed a reduced virulence of both M. bovis knock-in strains compared to the wild type, suggesting that PknH plays an important role in the differential virulence phenotype of M. bovis vs M. tuberculosis.


Assuntos
Proteínas de Bactérias/genética , Interações entre Hospedeiro e Microrganismos/genética , Mycobacterium tuberculosis/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas de Bactérias/metabolismo , Feminino , Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium tuberculosis/patogenicidade , Polimorfismo Genético/genética , Proteínas Serina-Treonina Quinases/metabolismo , Virulência/genética
10.
Front Microbiol ; 11: 1339, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625195

RESUMO

Vaccination through the natural route of infection represents an attractive immunization strategy in vaccinology. In the case of tuberculosis, vaccine delivery by the respiratory route has regained interest in recent years, showing efficacy in different animal models. In this context, respiratory vaccination triggers lung immunological mechanisms which are omitted when vaccines are administered by parenteral route. However, contribution of mucosal antibodies to vaccine- induced protection has been poorly studied. In the present study, we evaluated in mice and non-human primates (NHP) a novel whole cell inactivated vaccine (MTBVAC HK), by mucosal administration. MTBVAC HK given by intranasal route to BCG-primed mice substantially improved the protective efficacy conferred by subcutaneous BCG only. Interestingly, this improved protection was absent in mice lacking polymeric Ig receptor (pIgR), suggesting a crucial role of mucosal secretory immunoglobulins in protective immunity. Our study in NHP confirmed the ability of MTBVAC HK to trigger mucosal immunoglobulins. Importantly, in vitro assays demonstrated the functionality of these immunoglobulins to induce M. tuberculosis opsonization in the presence of human macrophages. Altogether, our results suggest that mucosal immunoglobulins can be induced by vaccination to improve protection against tuberculosis and therefore, they represent a promising target for next generation tuberculosis vaccines.

11.
EBioMedicine ; 55: 102761, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32361249

RESUMO

BACKGROUND: Human tuberculosis (TB) is caused by a plethora of Mycobacterium tuberculosis complex (MTBC) strains belonging to seven phylogenetic branches. Lineages 2, 3 and 4 are considered "modern" branches of the MTBC responsible for the majority of worldwide TB. Since the current BCG vaccine confers variable protection against pulmonary TB, new candidates are investigated. MTBVAC is the unique live attenuated vaccine based on M. tuberculosis in human clinical trials. METHODS: MTBVAC was originally constructed by unmarked phoP and fadD26 deletions in a clinical isolate belonging to L4. Here we construct new vaccines based on isogenic gene deletions in clinical isolates of the L2 and L3 modern lineages. These three vaccine candidates were characterized at molecular level and also in animal experiments of protection and safety. FINDINGS: Safety studies in immunocompromised mice showed that MTBVAC-L2 was less attenuated than BCG Pasteur, while the original MTBVAC was found even more attenuated than BCG and MTBVAC-L3 showed an intermediate phenotype. The three MTBVAC candidates showed similar or superior protection compared to BCG in immunocompetent mice vaccinated with each MTBVAC candidate and challenged with three representative strains of the modern lineages. INTERPRETATION: MTBVAC vaccines, based on double phoP and fadD26 deletions, protect against TB independently of the phylogenetic linage used as template strain for their construction. Nevertheless, lineage L4 confers the best safety profile. FUNDING: European Commission (TBVAC2020, H2020-PHC-643381), Spanish Ministry of Science (RTI2018-097625-B-I00), Instituto de Salud Carlos III (PI18/0336), Gobierno de Aragón/Fondo Social Europeo and the French National Research Council (ANR-10-LABX-62-IBEID, ANR-16-CE35-0009, ANR-16-CE15-0003).


Assuntos
Proteínas de Bactérias/imunologia , Ligases/imunologia , Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/prevenção & controle , Animais , Vacina BCG/administração & dosagem , Vacina BCG/biossíntese , Vacina BCG/genética , Proteínas de Bactérias/genética , Feminino , Deleção de Genes , Expressão Gênica , Patrimônio Genético , Humanos , Imunogenicidade da Vacina , Ligases/deficiência , Ligases/genética , Camundongos , Camundongos SCID , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Segurança do Paciente , Análise de Sobrevida , Vacinas contra a Tuberculose/biossíntese , Vacinas contra a Tuberculose/genética , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/mortalidade , Vacinação , Vacinas Atenuadas , População Branca
12.
PLoS Pathog ; 16(4): e1008404, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32240273

RESUMO

Among infectious diseases, tuberculosis is the leading cause of death worldwide, and represents a serious threat, especially in developing countries. The protective effects of Bacillus Calmette-Guerin (BCG), the current vaccine against tuberculosis, have been related not only to specific induction of T-cell immunity, but also with the long-term epigenetic and metabolic reprogramming of the cells from the innate immune system through a process termed trained immunity. Here we show that MTBVAC, a live attenuated strain of Mycobacterium tuberculosis, safe and immunogenic against tuberculosis antigens in adults and newborns, is also able to generate trained immunity through the induction of glycolysis and glutaminolysis and the accumulation of histone methylation marks at the promoters of proinflammatory genes, facilitating an enhanced response after secondary challenge with non-related bacterial stimuli. Importantly, these findings in human primary myeloid cells are complemented by a strong MTBVAC-induced heterologous protection against a lethal challenge with Streptococcus pneumoniae in an experimental murine model of pneumonia.


Assuntos
Modelos Animais de Doenças , Imunidade Inata/imunologia , Monócitos/imunologia , Mycobacterium tuberculosis/imunologia , Pneumonia/prevenção & controle , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose/prevenção & controle , Animais , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , Células Cultivadas , Reprogramação Celular , Feminino , Humanos , Imunidade Inata/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Pneumonia/imunologia , Pneumonia/microbiologia , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinação
14.
Mol Ther Methods Clin Dev ; 13: 253-264, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30859110

RESUMO

The tuberculosis (TB) vaccine MTBVAC is the only live-attenuated Mycobacterium tuberculosis (Mtb)-based vaccine in clinical development, and it confers superior protection in different animal models compared to the current vaccine, BCG (Mycobacterium bovis bacillus Calmette-Guérin). With the aim of using MTBVAC as a vector for a dual TB-HIV vaccine, we constructed the recombinant MTBVAC.HIVA2auxo strain. First, we generated a lysine auxotroph of MTBVAC (MTBVACΔlys) by deleting the lysA gene. Then the auxotrophic MTBVACΔlys was transformed with the E. coli-mycobacterial vector p2auxo.HIVA, harboring the lysA-complementing gene and the HIV-1 clade A immunogen HIVA. This TB-HIV vaccine conferred similar efficacy to the parental strain MTBVAC against Mtb challenge in mice. MTBVAC.HIVA2auxo was safer than BCG and MTBVAC in severe combined immunodeficiency (SCID) mice, and it was shown to be maintained up to 42 bacterial generations in vitro and up to 100 days after inoculation in vivo. The MTBVAC.HIVA2auxo vaccine, boosted with modified vaccinia virus Ankara (MVA).HIVA, induced HIV-1 and Mtb-specific interferon-γ-producing T cell responses and polyfunctional HIV-1-specific CD8+ T cells producing interferon-γ (IFN-γ), tumor necrosis factor alpha (TNF-α), and CD107a in BALB/c mice. Here we describe new tools to develop combined vaccines against TB and HIV with the potential of expansion for other infectious diseases.

15.
PLoS Genet ; 14(4): e1007282, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649213

RESUMO

The insertion Sequence IS6110, only present in the pathogens of the Mycobacterium tuberculosis Complex (MTBC), has been the gold-standard epidemiological marker for TB for more than 25 years, but biological implications of IS6110 transposition during MTBC adaptation to humans remain elusive. By studying 2,236 clinical isolates typed by IS6110-RFLP and covering the MTBC, we remarked a lineage-specific content of IS6110 being higher in modern globally distributed strains. Once observed the IS6110 distribution in the MTBC, we selected representative isolates and found a correlation between the normalized expression of IS6110 and its abundance in MTBC chromosomes. We also studied the molecular regulation of IS6110 transposition and we found a synergistic action of two post-transcriptional mechanisms: a -1 ribosomal frameshift and a RNA pseudoknot which interferes translation. The construction of a transcriptionally active transposase resulted in 20-fold increase of the transposition frequency. Finally, we examined transposition in M. bovis and M. tuberculosis during laboratory starvation and in a mouse infection model of TB. Our results shown a higher transposition in M. tuberculosis, that preferably happens during TB infection in mice and after one year of laboratory culture, suggesting that IS6110 transposition is dynamically adapted to the host and to adverse growth conditions.


Assuntos
Elementos de DNA Transponíveis/genética , Mycobacterium tuberculosis/genética , Animais , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Mudança da Fase de Leitura do Gene Ribossômico , Genes Bacterianos , Humanos , Camundongos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Processamento Pós-Transcricional do RNA , Tuberculose/microbiologia
16.
Transl Res ; 197: 32-42, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29702078

RESUMO

Intravesical instillation of bacillus Calmette-Guérin (BCG) has been a first-line therapy for non-muscle-invasive bladder cancer for the last 4 decades. However, this treatment causes serious adverse events in a significant number of patients and a substantial percentage of recurrence episodes. MTBVAC is a live-attenuated vaccine derived from a Mycobacterium tuberculosis clinical isolate and is currently under evaluation in clinical trials to replace BCG as a tuberculosis vaccine. Here, we describe for the first time the potential of MTBVAC as a bladder cancer therapy in vitro and in vivo in a preclinical model. MTBVAC colonized human bladder tumor cells to a much greater extent than BCG via a mechanism mediated by macropinocytosis and induced cell growth inhibition after internalization. In vivo testing in an orthotopic murine model of bladder cancer demonstrated a higher antitumor effect of MTBVAC in experimental conditions in which BCG did not work. Our data encourage further studies to support the possible application of MTBVAC as a new immunotherapeutic agent for bladder cancer.


Assuntos
Mycobacterium tuberculosis/imunologia , Vacinas contra a Tuberculose/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Vacinas Atenuadas/uso terapêutico , Administração Intravesical , Animais , Antineoplásicos , Vacina BCG/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Humanos , Camundongos , Pinocitose , Resultado do Tratamento , Neoplasias da Bexiga Urinária/patologia
17.
Nat Commun ; 8: 16085, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28706226

RESUMO

MTBVAC is a live-attenuated Mycobacterium tuberculosis vaccine, currently under clinical development, that contains the major antigens ESAT6 and CFP10. These antigens are absent from the current tuberculosis vaccine, BCG. Here we compare the protection induced by BCG and MTBVAC in several mouse strains that naturally express different MHC haplotypes differentially recognizing ESAT6 and CFP10. MTBVAC induces improved protection in C3H mice, the only of the three tested strains reactive to both ESAT6 and CFP10. Deletion of both antigens in MTBVAC reduces its efficacy to BCG levels, supporting a link between greater efficacy and CFP10- and ESAT6-specific reactogenicity. In addition, MTBVAC (but not BCG) triggers a specific response in human vaccinees against ESAT6 and CFP10. Our results warrant further exploration of this response as potential biomarker of protection in MTBVAC clinical trials.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Vacinas contra a Tuberculose/imunologia , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Camundongos Endogâmicos , Mycobacterium tuberculosis
18.
J Vis Exp ; (115)2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27684521

RESUMO

Despite global coverage of intradermal BCG vaccination, tuberculosis remains one of the most prevalent infectious diseases in the world. Preclinical data have encouraged pulmonary tuberculosis vaccines as a promising strategy to prevent pulmonary disease, which is responsible for transmission. In this work, we describe the methodology used to demonstrate in the mouse model the benefits of intranasal BCG vaccination when compared to subcutaneous. Our data revealed greater protective efficacy following intranasal BCG administration. In addition, our results indicate that pulmonary vaccination triggers a higher immune response in lungs, including Th1 and Th17 responses, as well as an increase of immunoglobulin A (IgA) concentration in respiratory airways. Our data show correlation between protective efficacy and the presence of IL17-producing cells in lungs post-Mycobacterium tuberculosis challenge, suggesting a role for this cytokine in the protective response conferred by pulmonary vaccination. Finally, we detail the global workflow we have developed to study respiratory vaccination in the mouse model, which could be extrapolated to other tuberculosis vaccines, apart from BCG, targeting the mucosal response or other pulmonary routes of administration such as the intratracheal or aerosol.


Assuntos
Vacina BCG , Tuberculose Pulmonar/prevenção & controle , Administração Intranasal , Animais , Interleucina-17 , Camundongos , Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculose/prevenção & controle
19.
PLoS One ; 11(4): e0153028, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27055232

RESUMO

Granzyme A, a serine protease expressed in the granules of cytotoxic T and Natural Killer cells, is involved in the generation of pro-inflammatory cytokines by macrophages. Granzyme A has been described to induce in macrophages in vitro the activation of pro-inflammatory pathways that impair intracellular mycobacterial replication. In the present study, we explored the physiological relevance of Granzyme A in the control of pulmonary Mycobacterium tuberculosis infection in vivo. Our results show that, even though Granzyme A is expressed by cytotoxic cells from mouse lungs during pulmonary infection, its deficiency in knockout mice does not have an effect in the control of M. tuberculosis infection. In addition our findings indicate that absence of Granzyme A does not affect the protection conferred by the live-attenuated M. tuberculosis vaccine MTBVAC. Altogether, our findings are in apparent contradiction with previously published in vitro results and suggest that Granzyme A does not have a crucial role in vivo in the protective response to tuberculosis.


Assuntos
Regulação Enzimológica da Expressão Gênica , Granzimas/metabolismo , Pulmão/enzimologia , Mycobacterium tuberculosis , Tuberculose Pulmonar/enzimologia , Animais , Granzimas/genética , Pulmão/patologia , Camundongos , Camundongos Knockout , Vacinas contra a Tuberculose/farmacologia , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/patologia , Tuberculose Pulmonar/prevenção & controle
20.
Tuberculosis (Edinb) ; 96: 71-4, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26786657

RESUMO

Development of novel more efficient preventive vaccines against tuberculosis (TB) is crucial to achieve TB eradication by 2050, one of the Millennium Development Goals (MDG) for the current century. MTBVAC is the first and only live attenuated vaccine based on a human isolate of Mycobacterium tuberculosis developed as BCG-replacement strategy in newborns that has entered first-in-human adult clinical trials. In this work, we characterize the safety, immunogenicity and protective efficacy of MTBVAC in a model of newborn C57/BL6 mice. Our data clearly indicate that MTBVAC is safe for newborn mice, and does not affect animal growth or organ development. In addition, MTBVAC-vaccinated mice at birth showed enhanced immunogenicity and better protection against M. tuberculosis challenge in comparison with BCG.


Assuntos
Mycobacterium tuberculosis/crescimento & desenvolvimento , Vacinas contra a Tuberculose/farmacologia , Tuberculose/prevenção & controle , Animais , Animais Recém-Nascidos , Vacina BCG/imunologia , Vacina BCG/farmacologia , Modelos Animais de Doenças , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Fatores de Tempo , Tuberculose/imunologia , Tuberculose/microbiologia , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/toxicidade , Aumento de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...